skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Silva, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Silva, S; Paquete, L (Ed.)
    Coevolving teams of agents promises effective solutions for many coordination tasks such as search and rescue missions or deep ocean exploration. Good team performance in such domains generally relies on agents discovering complex joint policies, which is particularly difficult when the fitness functions are sparse (where many joint policies return the same or even zero fitness values). In this paper, we introduce Novelty Seeking Multiagent Evolutionary Reinforcement Learning (NS-MERL), which enables agents to more efficiently explore their joint strategy space. The key insight of NS-MERL is to promote good exploratory behaviors for individual agents using a dense, novelty-based fitness function. Though the overall team-level performance is still evaluated via a sparse fitness function, agents using NS-MERL more efficiently explore their joint action space and more readily discover good joint policies. Our results in complex coordination tasks show that teams of agents trained with NS-MERL perform significantly better than agents trained solely with task-specific fitnesses. 
    more » « less